Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Proc Natl Acad Sci U S A ; 120(47): e2309227120, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37963245

Spatial transcriptomics technology has revolutionized our understanding of cell types and tissue organization, opening possibilities for researchers to explore transcript distributions at subcellular levels. However, existing methods have limitations in resolution, sensitivity, or speed. To overcome these challenges, we introduce SPRINTseq (Spatially Resolved and signal-diluted Next-generation Targeted sequencing), an innovative in situ sequencing strategy that combines hybrid block coding and molecular dilution strategies. Our method enables fast and sensitive high-resolution data acquisition, as demonstrated by recovering over 142 million transcripts using a 108-gene panel from 453,843 cells from four mouse brain coronal slices in less than 2 d. Using this advanced technology, we uncover the cellular and subcellular molecular architecture of Alzheimer's disease, providing additional information into abnormal cellular behaviors and their subcellular mRNA distribution. This improved spatial transcriptomics technology holds great promise for exploring complex biological processes and disease mechanisms.


Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Animals , Mice , RNA, Messenger/genetics , Transcriptome
2.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2656-2668, 2023 Jul 25.
Article Zh | MEDLINE | ID: mdl-37584122

Somatostatin (SST) is an inhibitory polypeptide hormone that plays an important role in a variety of biological processes. Somatostatin receptor 2 (SSTR2) is the most widely expressed somatostatin receptor. However, the specific cell types expressing Sstr2 in the tissues have not been investigated. In this study, we detected the expression pattern of SSTR2 protein in mouse at different development stages, including the embryonic 15.5 days and the postnatal 1, 7, 15 days as well as 3 and 6 months, by multicolour immunofluorescence analyses. We found that Sstr2 was expressed in some specific cells types of several tissues, including the neuronal cells and astrocytes in the brain, the mesenchymal cells, the hematopoietic cells, the early hematopoietic stem cells, and the B cells in the bone marrow, the macrophages, the type Ⅱ alveolar epithelial cells, and the airway ciliated cells in the lung, the epithelial cells and the neuronal cells in the intestine, the hair follicle cells, the gastric epithelial cells, the hematopoietic stem cells and the nerve fibre in the spleen, and the tubular epithelial cells in the kidney. This study identified the specific cell types expressing Sstr2 in mouse at different developmental stages, providing new insights into the physiological function of SST and SSTR2 in several cell types.


Brain , Animals , Mice , Brain/enzymology , Brain/metabolism
3.
Int J Biol Sci ; 18(11): 4329-4340, 2022.
Article En | MEDLINE | ID: mdl-35864961

Previous studies have demonstrated the in vitro oncogenic role of protein arginine methyltransferase 5 (PRMT5) in gastric cancer cell lines. The in vivo function of PRMT5 in gastric tumorigenesis, however, is still unexplored. Here, we showed that Prmt5 deletion in mouse gastric epithelium resulted in spontaneous tumorigenesis in gastric antrum. All Prmt5-deficient mice displayed intestinal-type gastric cancer within 4 months of age. Of note, 20% (2/10) of Prmt5 mutants finally developed into invasive gastric cancer by 8 months of age. Gastric cancer caused by PRMT5 loss exhibited the increase in Lgr5+ stem cells, which are proposed to contribute to both the gastric tumorigenesis and progression in mouse models. Consistent with the notion that Lgr5 is the target of Wnt/ß-catenin signaling, whose activation is the most predominant driver for gastric tumorigenesis, Prmt5 mutant gastric cancer showed the activation of Wnt/ß-Catenin signaling. Furthermore, in human gastric cancer samples, PRMT5 deletion and downregulation were frequently observed and associated with the poor prognosis. We propose that as opposed to the tumor-promoting role of PRMT5 well-established in the progression of various cancer types, PRMT5 functions as a tumor suppressor in vivo, at least during gastric tumor formation.


Protein-Arginine N-Methyltransferases , Stomach Neoplasms , Wnt Signaling Pathway , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Stomach Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism
4.
Genesis ; 60(6-7): e23488, 2022 07.
Article En | MEDLINE | ID: mdl-35765931

Indian hedgehog (Ihh), a member of the Hh family, plays important roles in vertebrate development and homeostasis. To improve our understanding of the function of Ihh-expressing cells and their progeny as well, we generate an Ihh-mKate2tomm20 -Dre knock-in mouse line that can label Ihh-positive cells with a fluorescence protein mKate2 and trace Ihh-positive cells and their progeny via Dre-mediated recombination. Consistent with previous reports, we verified Ihh expression in hypertrophic chondrocytes of growth plate and granulosa cells of ovarian follicles by mKate2 immunostaining, and meanwhile confirmed Dre activity in these cells via a Dre reporter mouse line Rosa26-confetti2. We also found, for the first time, that Ihh can mark some cell types, including retinal ganglion cells, Purkinje cells, and gallbladder epithelial cells. Taken together, the Ihh-mKate2tomm20 -Dre mouse is a genetic tool for examining the precise expression profile of Ihh and tracing Ihh-expressing cells and their progeny.


Growth Plate , Hedgehog Proteins , Animals , Cell Differentiation , Chondrocytes/metabolism , Female , Fluorescent Antibody Technique , Growth Plate/metabolism , Hedgehog Proteins/genetics , Mice , Vertebrates
...